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We review the application of the Shapley Value to marketing research over the past 15 years.  We 

attempt to provide a comprehensive understanding of how it can give insight to customers.  We 

outline assumptions underlying the interpretations so that attendees will be better equipped to 

answer objections to the application of the Shapley Value as an insight tool. 

 

 

Imagine it is 1998.  My colleague Stan Lipovetsky, is working on a TURF analysis (Total 

Unduplicated Reach and Frequency) for product line optimization.  Stan, being new to marketing 

research, asked the obvious question – “what are we trying to do with the TURF analysis?”   

TURF
1
 is a technique that was first used in the media business to understand which magazines to 

place an advertisement in. The goal was to find a set of magazines that would maximize the 

number of people who would see your ad (unduplicated reach) as well as the maximizing the 

frequency of exposure among those who were reached.  This was adapted for marketing research 

for use in product line optimization.  Here, the idea was to find a set of products to offer in the 

marketplace such that you would maximize the number of people who would buy at least one of 

those products.  The general procedure at the time was to ask consumers to give a purchase 

interest scale response for each potential flavor in a product line.  Then the TURF algorithm is 

run to find the pair of flavors that maximizes reach (the number of people who will definitely 

buy at least one product of the two), the triplet that maximizes reach, the quad that maximizes 

reach and so on.  TURF itself is an np-hard problem. To be sure you have found the set of n 

products that maximizes reach you must calculate the reach for all possible sets of n. 

Stan looked at the calculations we were doing for the TURF analysis and said “This reminds me 

of something I know from game theory, the Shapley Value.”  “So, what is the Shapley Value?” I 

asked.  And so began a 15 year odyssey into the realm of game theory and a single tool that has 

turned out to be very useful in a variety of situations. 

The Shapley Value 

Shapley first described the Shapley Value in his seminal paper in 1953.
2
 The Shapley Value 

applies to cooperative games, where players can band together to form coalitions, and each 

coalition creates a value by playing the game.  The Shapley Value, allocates that total value of 
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the game to each player.  By evaluating over all possible coalitions that a player can join in, a 

value for each specific player can be derived. 

Formally the Shapley Value for player i is defined as: 

 

 

 

 

So, summing across all possible subsets of players S, the value of player i is the value of the 

game for a subset containing player i minus the value of that same subset of players without 

player i.  In other words, it is the marginal value of adding the player to any possible set of other 

players.  The summation is weighted by a factor that reflects the number of subsets of a 

particular size (s) that are possible given the total number of players (n). 

When we apply the concept to the TURF game we have a situation where we create all possible 

sets of products, and calculate the “value” of each set by determining its “reach”, or the percent 

of consumers in the study who would buy at least one item in the set. By applying the Shapley 

Value calculation to this data we can allocate the overall reach of all of the items to the 

individual items. This gives us a relative “value” of each individual product.  The values of these 

products add up to the total value of the game, or the reach, of all of the products. 

The fact that we can apply this calculation to the TURF game doesn’t necessarily mean that it is 

useful.  And, it certainly appears that the Shapley Value is an np-hard problem as well. We need 

to calculate the overall reach or value of every possible subset of products to even calculate the 

Shapley Value for each product. 

Fortunately, the TURF game corresponds to what is known in game theory as a simple game. A 

simple game has a number of properties. In a simple game, the value of a game is either a 1 or a 

0.  All players in a coalition or team that produce a 1 value have a Shapley Value of 1/r where r 

is the number of players in the team that can produce a win. In the TURF context, a consumer is 

reached by a subset of products. Those products all get a Shapley Value of 1/r where r is the 

number of products that are in that subset. All other products get a Shapley Value of 0. 

Another property of simple games is that they can be combined.  In our TURF data, we treat 

each consumer as being a simple game.  To combine the simple games represented by the 

consumers in our study, we calculate the Shapley Value for each product for each consumer and 

then average across consumers.  
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We solve the problem of how to calculate the Shapley Value for TURF problems by considering 

the TURF game as a simple game. But we still are not sure what this “value” represents.  For this 

we need to look at the problem from a marketing perspective. 

A Simple Model of Consumer Behavior 

Consider this simple model of consumer behavior: 

1. A consumer plans to buy in the category and enters the store 

2. She reviews the products available and identifies a small subset (relevant set) that have the 

possibility of meeting her needs 

3. She randomly chooses a product from that subset. 

Now clearly most of us are not explicitly using some random number generator in our heads to 

choose which product to buy when we visit the store.  Instead we evaluate the products available 

and choose the one that maximizes our personal utility, that is, we choose the product we 

prefer…at that moment.  The product that will maximize our utility depends upon several 

factors. One factor is the benefits that the particular product delivers.  A second factor is the 

benefits delivered by other competing products that are available in the store.  Benefits delivered 

are evaluated in the context of needs.  If one has no need for a benefit then its utility is non-

existent. If one has a great need for a particular benefit then a product delivering that benefit will 

have a high utility and a good chance of being the utility maximizing choice. 

When we observe consumer purchases, for example by looking at data from a purchase panel, 

one can see that the specific products available, and their benefits, stay relatively constant, but 

none the less, consumers seem to buy different products on different trips to the store.  This 

would seem to indicate that the driver of choice is the degree to which a person’s needs change 

from trip to trip.  Hypothetically, we can map an individual’s needs to specific products that 

maximize utility when that need is present.  This means that if we can observe the different 

products that a person purchases over some time period, then we can infer that those purchases 

are a result of the distribution of need states that exist for that consumer. 

If the distribution of need states for a specific consumer were such that the probability of 

choosing each product in the relevant set was equal then the purchase shares of each product 

would be the equivalent of the Shapley Value of each product.  Therefore, we can think of the 

Shapley Value calculation as a simple choice model, where the probability of choosing a 

particular product is 0 for all products not in the relevant set and 1/r for all r products in the 

relevant set. 

An alternative to the Shapley Value calculation would be to estimate the specific probabilities of 

choosing each product using a multinomial logit discrete choice model.  If, we can estimate the 

probabilities of purchase for each product for each consumer, then this should be a superior 

estimate of purchase shares since the probabilities estimated in this manner would not be 



arbitrarily equal for relevant products and would not be uniformly zero for non-relevant 

products.  But, is it feasible, in the context of a consumer interview, to obtain enough choice data 

to accurately estimate those probabilities of purchase, especially if the product space is large?  In 

addition, it is not possible in the course of a 20 minute interview to ask consumers to realistically 

make choices across multiple need states. 

Application of the Shapley Value to Consumer Behavior 

If we weight the consumers in our study by the relative frequency of category purchase and units 

per purchase occasion then the Shapley Value becomes directly, a measure of share of units 

purchased. This moves the Shapley Value from being an interesting research technique to being 

a very useful business management tool. 

Anecdotally, we understand that category managers at retailers obtain a ranked sales report for 

their category and consider the items that make up the bottom 20% of volume to be candidates 

for delisting or being replaced in the store.  Since the Shapley Value provides an estimate of the 

sales rate for each product (in any combination), we can create a more viable recommendation 

for a product line.  Instead of choosing products that maximize “reach”, we can use a dual rule of 

maximizing reach subject to the restriction that no products in the line fall into the bottom 20% 

of volume overall. 

To effectively do this analysis, one needs to collect data a little differently from TURF.  In a 

typical TURF study one asks respondents to give some purchase interest measure to each of the 

prospective products that would go in the product line.  A consumer is counted as “reached” if 

she provides a top-box response to the purchase interest question.  The problem with this 

approach is two-fold. First, the questioning procedure is very tedious, especially as the number 

of products in your product line increases.  For that very reason, competitive brands are not 

typically included.  But, competitive brands are critical.  Those are the products you want to 

replace on the retailer’s shelves.  The Shapley Value analysis can show you which of the 

competitor’s products your proposed line should displace, but it can only do so if you have 

included the competitive products in your study. 

Our suggestion is to ask respondents which products, from the category, they have purchased in 

some limited time period. (The time period should be dependent on the general category 

frequency of purchase).  This data can be used to calculate Shapley Values and optimize a 

product line if all we are considering are existing products in the marketplace. 

When considering new product concepts the problem is how to reliably determine if a new 

product would become part of a consumer’s relevant set. This is especially problematic since 

consumers are well known to overstate their interest in new product concepts.  A method we 

have found effective is to ask the typical purchase intent question for the new product and 

supplement it by asking consumers to rank order the new concept amongst the other products 

they currently buy (i.e. the ones selected in the previous task).  We count a new product as 



entering an individual consumer’s relevant set if, and only if, they rated it top box in purchase 

intent and they ranked it ahead of all currently bought products.  In our experience, this 

procedure appears to produce reasonable estimates from the Shapley Value. (Since there is no 

actual sales data in these cases a true validation has not been possible). 

Going beyond TURF – Other applications of the Shapley Value 

Recall that the Shapley Value is a way of allocating the total value of a game to the participants 

in a fair manner.  There are plenty of situations where we only know the total value of something 

but we want to understand how that value can be allocated to the components that create that 

value.  One clear example is linear regression analysis.  Here we want to understand the value 

that each predictor has in producing the overall value of the model.  The overall value of the 

model is usually measured by the R
2
 value.  Frequently we wish to allocate that overall R

2
 value 

to the predictors to determine their relative importance. 

In 2000, my colleague Stan was working with one method of evaluating the importance of 

predictors, the net effects.  Net effects are a decomposition of the R
2
 defined as: 

𝛽′𝑅𝛽 = 𝑁𝐸 

 Where the betas are vectors of standardized regression coefficients and R is the correlation 

matrix of the predictor variables. The NE vector, when summed equals the R
2
 of the model.  This 

particular decomposition of R
2
 is problematic when there is a high degree of multicollinearity 

amongst the predictors. In those cases there can often be a sign reversal in the beta coefficients 

which can cause the net effect for that predictor to be negative.  This makes the interpretation of 

the net effects as an allocation of the total predictive power of the model illogical. 

My experience with the Shapley Value caused me to wonder if the Shapley Value might be a 

solution to this problem. The Shapley Value is an allocation of a total value. The individual 

Shapley Values will therefore sum to that total value, and they will all be positive.  We can easily 

(although less easily than the line optimization case) calculate the incremental value of each 

predictor across all combinations of predictors. 

In the Shapley Value equation we substitute for the value term the R
2
 of each model: 

  

 

This is no longer a simple game in the parlance of game theory so it becomes an np-hard 

problem again.  But, for sets of predictors that are smaller than 30 it is a reasonable calculation 

on modern computers. 
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I was convinced that this was an excellent idea.  As is often the case with excellent ideas, it 

turned out that there were many others doing research in other fields who had also come up with 

essentially the same idea.
345

 Many other related techniques also appear in the literature. 

We did, however, take the approach one step further.  Going back to the net effects 

decomposition discussed earlier we realized that both of these techniques, net effects and 

Shapley Value were trying to do the same thing, allocate the overall model R
2
 to the individual 

predictors.  So, if we assume that the Shapley Values are approximations of the Net Effects then 

we can “reverse” the decomposition and calculate new beta coefficients so that they are as 

consistent as possible with the Shapley Values. 

𝛽′𝑅𝛽 ≅ 𝑆𝑉 

This requires a non-linear solver but we can estimate a new set of beta coefficients that result in 

Net Effects that are very close to the Shapley Values.  These new coefficients can then be used in 

a predictive model. 

Gromping and Landau have criticized this approach
6
.  We show in a rejoinder

7
that in conditions 

of high multicollinearity, the model with the adjusted beta coefficients as described above does a 

better job of predicting new data than the standard OLS model.  We do recommend only utilizing 

the adjusted coefficients in those extreme conditions. 

Of course, there are other decompositions of R
2
 in the literature besides the Net Effects 

decomposition.  One decomposition, which was first described by Gibson
8
, and later 

rediscovered by Johnson
9
 decomposes the R

2
 as follows. 

𝑅2 = 𝛽′𝑅
1
2⁄ 𝑅

1
2⁄ β 

This produces two identical vectors of weights ω that when squared, sum to the R
2 

of the model. 

These can be interpreted as importance weights and are very close approximations to the Shapley 

Values.  The advantage of using this approximation of the Shapley Values for importance is that 

this particular decomposition is not an np-hard problem like the Shapley Value calculation and 

therefore is much easier to compute with large numbers of predictors. 

Moving on from Linear Regression – Other Allocation problems 
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One of the nice things about the Shapley Value is that the “value function” is abstract. You can 

define value in any way that you want, turn the Shapley Value crank and output an allocation of 

that value to the component parts. 

Consider the customer satisfaction problem.  The Kano theory of customer satisfaction
10

 

suggests that different product benefits have different types of relationships to overall 

satisfaction.   

 

Identifying attributes that are “basic needs” or “must-be” attributes is critical in customer 

satisfaction research.  These are the items that cause overall dissatisfaction if, and only if, you 

fail to deliver.  The interesting thing about these attributes is that they are non-compensatory, 

that is, if you fail to deliver on any one of these attributes you will have overall dissatisfaction, 

no matter how well you perform on other attributes.   

Standard linear regression driver model approaches clearly don’t work here. There are two 

issues, first a linear regression model is inherently compensatory, and second, the vast majority 

of the data is located in the upper right quadrant of the graph above. 

As a result, we construct a model like this: 

First – let  𝐴̅, 𝐵̅, 𝐶̅ … 𝐾̅ represent customers dissatisfied with A,B,C….K respectively 

          also let 𝑌̅represent customers dissatisfied overall. 

                                                 
10

 (Kano, Seraku, Takahashi, & Tsuji, 1984) 

Graphic by David Brown - Wikipedia 



We want to find a set of items such that 

{𝐴|𝐵|𝐶̅̅ ̅̅ ̅̅ ̅̅ } => 𝑌̅ 

 in other words, dissatisfaction with A or B or C implies dissatisfaction overall 

One way of evaluating this is by calculating the reach into 𝑌̅. In other words, the percent of 

dissatisfied people 𝑌̅ that are dissatisfied with any item in the set.  But, this cannot be the end of 

the calculation because we need to subtract from this the percent of people who are satisfied 

overall 𝑌 but are dissatisfied with one of the items in the set.  In other words we need to subtract 

the false positive rate. This statistic is known as Youden’s J
11

 and we can use it to evaluate any 

dissatisfaction model of the form noted above.  

In our case, we treat Youden’s J statistic as the “value” of the set of items.  We can search for the 

set of items that maximizes Youden’s J and then use the Shapley Value calculation to allocate 

that value to the individual items
12

. This provides a priority for improvement. 

Summary 

Since we started using the Shapley Value in marketing research problems a decade and one half 

ago we have found it to be a very useful technique whenever we need to allocate a total value to 

component parts.   

In the case of line optimization it immediately generalizes to a reasonable model of consumer 

behavior making it an extremely useful business management tool.  Other applications have also 

proved to be quite useful.  Business management, after all, seems to be primarily about 

prioritization and the Shapley Value procedure provides a convenient way to prioritize the 

components of many business decisions when direct measures of value of those components are 

not available. 
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